
T
h
e 

Jo
u
rn

al
 o

f 
E
xp

er
im

en
ta

l 
M

ed
ic

in
e

ARTICLE

The Rockefeller University Press $30.00

J. Exp. Med. Vol. 205 No. 12 2763-2779

www.jem.org/cgi/doi/10.1084/jem.20081398

2763

    It is clear from many studies that HIV-1 –  or 
SIV-specifi c CD8 +  and CD4 +  T cell responses 
have an important role in containing viral rep-
lication ( 1 – 5 ). However, in most cases cellular 
immunity to HIV-1 proves incapable of long-
term control of viremia and, without antiretro-
viral therapy, progression to AIDS occurs. The 
failure of the host immune system to contain 
HIV-1 is related to the functional impairment 
of HIV-1 – specifi c CD8 +  and CD4 +  T cells that 
accompanies progressive HIV-1 infection, a phe-
nomenon which is referred to as T cell  exhaustion 

( 6 – 17 ). In HIV-1 infection, the  deterioration of 
the T cell response follows a characteristic pat-
tern: proliferative capacity, cytotoxic potential, 
and the ability to produce IL-2 are lost early, 
whereas the production of IFN- �  is more en-
during. Ultimately, the majority of T cells chroni-
cally exposed to HIV-1 antigens enter into a state 
of dysfunction and, as disease advances, even 
the ability to produce IFN- �  is progressively 
impaired ( 7, 8, 18 – 22 ). The causal relationship 
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 Tim-3 expression defi nes a novel population 
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 Progressive loss of T cell functionality is a hallmark of chronic infection with human immu-

nodefi ciency virus 1 (HIV-1). We have identifi ed a novel population of dysfunctional T cells 

marked by surface expression of the glycoprotein Tim-3. The frequency of this population 

was increased in HIV-1 – infected individuals to a mean of 49.4  ±  SD 12.9% of CD8 +  T cells 

expressing Tim-3 in HIV-1 – infected chronic progressors versus 28.5  ±  6.8% in HIV-1 –

 uninfected individuals. Levels of Tim-3 expression on T cells from HIV-1 – infected inviduals 

correlated positively with HIV-1 viral load and CD38 expression and inversely with CD4 +  T 

cell count. In progressive HIV-1 infection, Tim-3 expression was up-regulated on HIV-1 –

 specifi c CD8 +  T cells. Tim-3 – expressing T cells failed to produce cytokine or proliferate in 

response to antigen and exhibited impaired Stat5, Erk1/2, and p38 signaling. Blocking the 

Tim-3 signaling pathway restored proliferation and enhanced cytokine production in HIV-

1 – specifi c T cells. Thus, Tim-3 represents a novel target for the therapeutic reversal of 

HIV-1 – associated T cell dysfunction. 

© 2008 Jones et al. This article is distributed under the terms of an Attribu-
tion–Noncommercial–Share Alike–No Mirror Sites license for the fi rst six months 
after the publication date (see http://www.jem.org/misc/terms.shtml). After six 
months it is available under a Creative Commons License (Attribution–Noncom-
mercial–Share Alike 3.0 Unported license, as described at http://creativecommons
.org/licenses/by-nc-sa/3.0/).
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  Figure 1.     Tim-3 is up-regulated on T cells in HIV-1 infection, and its expression correlates with parameters of HIV-1 disease progression.  

(a) PBMCs from HIV-1 – infected and uninfected subjects were stained with antibodies against CD4, CD8, CD3, and a biotinylated polyclonal goat anti –

 Tim-3 antibody, followed by a secondary streptavidin – APC conjugate. Plots show events gated on the CD3 +  population, and subsequently on the CD8 +  or 

CD4 +  populations, from a representative HIV-1 – uninfected subject and a chronically HIV-1 – infected subject. Biotinylated normal goat serum was used 

as a negative control. (b) The percentages of Tim-3 +  cells within CD8 +  and CD4 +  T cell populations are indicated for nine HIV-1 – uninfected individuals and 31 
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individuals from the CIRC cohort separated into three groups: acute/early HIV-1 infected ( 7 ), HIV-1 – infected chronic progressors ( 16 ), and HIV-1 – infected 

viral controller ( 8 ), using polyclonal goat anti – Tim-3 antibody. (c) The percentages of Tim-3 +  cells within CD8 +  and CD4 +  T cell populations are indicated 

for 60 treatment-naive HIV-1 – infected individuals from the UCSF OPTIONS cohort of primary infection and 9 HIV-1 – uninfected controls using PE-conju-

gated monoclonal anti – Tim-3 antibody. Subjects from the CIRC cohort were defi ned as follows: acute/early = infected with HIV-1  <  4 mo; chronic 

 progressor = infected  >  1 yr with CD4 +  T cell count decline  > 50 cells/mm 3 /yr, viral controller infected  > 1 yr, no evidence of CD4 +  T cell count decline, 

and viral load  < 5,000 copies/ml bDNA. Characteristics of the OPTIONS acute/early infection cohort are detailed in Materials and methods. Statistical anal-

yses for both cohorts were performed using the Mann-Whitney test. (d and e) Correlations between Tim-3 expression on CD8 +  and CD4 +  T cells and viral 

load, CD4 +  T cell counts, and levels of CD38 expression among individuals with available clinical data from the CIRC cohort (d) and OPTIONS cohort (e). 

Shown for the CIRC cohort are Tim-3 levels determined using a polyclonal anti – Tim-3 antibody. Confi rmatory experiments were performed using a PE-

conjugated monoclonal anti – Tim-3, and a tight correlation between the two datasets was observed, with slightly higher frequencies of Tim-3 – expressing 

cells observed with polyclonal anti – Tim-3 antibody (Fig. S2 a). For the OPTIONS cohort, levels of Tim-3 expression were assessed using the monoclonal 

anti – Tim-3 antibody. Statistical analyses were performed using the Spearman ’ s rank correlation test. Solid lines show the mean. Fig. S2 is available at 

http://www.jem.org/cgi/content/full/jem.20081398/DC1.   

 

between this progressive T cell exhaustion and high levels of 
HIV-1 replication in progressive infection remains unclear. 
Recently, signaling through PD-1 was shown to play an im-
portant role in T cell exhaustion in three models of chronic 
viral infection: LCMV in mice, SIV in rhesus macaques, and 
HIV-1 in humans ( 12, 13, 15, 23 – 25 ). Blockade of the PD-1 –
 PD-L1 signaling pathway results in enhanced T cell responses 
and viral control in mouse LCMV infection, as well as in en-
hanced survival and proliferation of HIV-1 – specifi c CD8 +  T 
cells in vitro. Increased levels of total cytokine production and 
increased frequencies of cells producing cytokine in response 
to antigen are also induced in 6-d in vitro cultures treated 
with anti – PD-L1 ( 12, 15 ). However, it has been demonstrated 
that there is no direct relationship between the level of PD-1 
expression of an HIV-1 –  or SIV-specifi c CD8 +  T cell and the 
ability of that cell to produce cytokine upon ex vivo stimula-
tion ( 13, 25 ). This has lead to the suggestion that the enhanced 
levels of total cytokine production observed in vitro with the 
addition of anti – PD-L1 is the result of greater survival and 
expansion of antigen-specifi c CD8 +  T cells rather than im-
proved functionality on a per-cell basis. These data suggest that 
PD-1 expression marks a population exhibiting features of 
relatively early T cell exhaustion, where cell survival and pro-
liferation are impaired but cytokine production remains in-
tact. Thus, the mechanisms leading to advanced stages of T cell 
exhaustion, where cytokine production becomes impaired, re-
main largely undefi ned. 

 Tim-3 (T cell immunoglobulin and mucin domain – con-
taining molecule 3) is an Ig superfamily member that was identi-
fi ed as a specifi c cell surface marker of mouse Th1 CD4 +  T cells 
( 26 ). Interaction of mouse Tim-3 with its ligand, galectin-9, 
regulates Th1 responses by promoting the death of IFN- �  –
 producing Th1 cells ( 27 ). In mice, blocking the interaction of 
Tim-3 with its ligands prevents the acquisition of transplantation 
tolerance induced by costimulatory blockade ( 27, 28 ). Further-
more, Tim-3 – defi cient mice are refractory to the induction of 
high-dose tolerance in an experimental autoimmune encephalo-
myelitis model, and anti – Tim-3 monoclonal antibody treatment 
of SJL/J mice exacerbated experimental autoimmune encepha-
lomyelitis ( 26, 29 ). These results indicate that Tim-3 plays a role 
in suppressing Th1-mediated immune responses, at least par-
tially through the termination of eff ector Th1 cells. In humans, 

a defect in up-regulation of Tim-3 on IFN- �  – producing CD4 +  
T cells has been implicated as a contributing factor to the pathol-
ogy associated with multiple sclerosis ( 30, 31 ). No study has yet 
examined the role of Tim-3 in chronic viral infection. 

  RESULTS  

 Tim-3 expression on T cells correlates with clinical 

parameters of progression in HIV-1 – infected individuals 

 We profi led Tim-3 expression by fl ow cytometry on PBMC 
from 9 HIV-1 – uninfected individuals and 31 treatment-naive, 
acute/early, and chronically HIV-1 – infected subjects (Canadian 
Immunodefi ciency Research Collaborative [CIRC] cohort) that 
included both viral controllers (nonprogressors) and progressors 
using a polyclonal anti – Tim-3 antibody. We observed elevated 
frequencies of Tim-3 – expressing CD8 +  T cells in acute/early 
and chronic progressive HIV-1 – infected individuals, but not in 
viral controllers, relative to uninfected individuals (mean 28.5  ±  
SD 6.8% for HIV-1 – uninfected versus 52.2  ±  19.0% for 
acutely/early infected individuals [P = 0.0015], 49.4  ±  12.9% 
for chronic progressors [P = 0.0003], and 31.6  ±  7.3% for viral 
controllers [P = 0.48];  Fig. 1, a and b ).  Tim-3 expression was 
also elevated on CD4 +  T cells from acutely/early infected indi-
viduals and chronic progressors, as compared with both viral 
controllers and HIV-1 – uninfected individuals ( Fig. 1, a and b ). 
The frequency of Tim-3 +  CD8 +  T cells correlated positively 
with HIV-1 viral load (P  <  0.0001;  Fig. 1 d ) and inversely with 
absolute CD4 +  T cell counts (P  <  0.0001;  Fig. 1 d ). Similarly, 
the frequencies of Tim-3 +  CD4 +  T cells were signifi cantly cor-
related with viral load (P = 0.0087) and absolute CD4 +  T cell 
counts (P = 0.0273;  Fig. 1 d ). T cell activation, as reported by 
CD38 expression, is an additional predictor of disease progres-
sion ( 32 ). CD38 expression on CD8 +  T cells correlated with 
the frequency of Tim-3 +  CD8 +  T cells (P  <  0.0001;  Fig. 1 d ), 
and CD38 expression on CD4 +  T cells correlated with the fre-
quency of Tim-3 +  CD4 +  T cells (P  <  0.05;  Fig. 1 d ). In acute/
early and chronic progressive HIV-1 infection, increased ex-
pression of both Tim-3 and CD38 manifested as a frequent dual 
Tim-3 +  CD38 +  population of CD8 +  T cells (Fig. S1, available 
at http://www.jem.org/cgi/content/full/jem.20081398/DC1). 
In a separate cohort of 60 treatment-naive acutely/early HIV-
1 – infected individuals (OPTIONS cohort), we observed an 
analogous increase in the frequency of Tim-3 +  CD8 +  and CD4 +  
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 Tim-3 is up-regulated on HIV-1 – specifi c CD8 +  T cells 

in progressive HIV-1 infection 

 Tim-3 expression on antigen-specifi c CD8 +  T cells was exam-
ined in HLA-A*0201 + , HLA-B*0702 + , and HLA-B*0801 +  

T cells as assessed with a monoclonal anti – Tim-3 antibody ( Fig. 
1 c  and Fig. S2 a). Similar positive correlations between HIV-1 
viremia, CD38, and Tim-3 expression on T cells were also ob-
served in this acute/early infection cohort ( Fig. 1 e ). 

  Figure 2.     Tim-3 is expressed at elevated levels on HIV-1 – specifi c CD8 +  T cells in progressive HIV-1 infection.  PBMC from HLA-A*0201 + , HLA-

B*0702 + , and HLA-B*0801 +  chronically HIV-1 – infected individuals from the CIRC cohort were stained with matched HLA pentamers presenting CMV, EBV, 

infl uenza, and HIV-1 epitopes, and with anti – Tim-3. (a) Shown are representative fl ow cytometry data from one HIV-1 – infected chronic progressor using 

HLA-A*0201 pentamers presenting the CMV-pp65 epitope NLVPMVATV, the EBV-Bmlf1 epitope GLCTLVAML, the HIV-1 – Pol epitope ILKEPVHGV, and the 

HIV-1 – Gag epitope SLYNTVATL. (b – e) Compiled Tim-3 expression data from chronic progressors ( n  = 41) is shown for pooled Tim-3 expression on HIV-1 

(b and d) and CMV-specifi c CD8 +  T cell responses from chronic progressors ’  individual epitope responses (c and e). Statistical analyses comparing pooled 

responses were performed using the Mann-Whitney test. Solid lines show the mean.   
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levels ( Fig. 2, c and e ). The heterogeneity observed in Tim-3 
expression levels on HIV-1 – specifi c CD8 +  T cells cannot be 
attributed solely to intersubject variability, as responses with 
high levels of Tim-3 expression were frequently observed con-
temporaneously with responses exhibiting low levels of Tim-3 
expression within the same individual. This leads us to specu-
late that Tim-3 expression may mark HIV-1 – specifi c T cells 
with diff ering functional capacities. 

 Reduction of Tim-3 expression upon initiation of highly 

active antiretroviral therapy (HAART) is correlated 

with levels of ongoing T cell activation (CD38 expression) 

 The eff ect of HAART on Tim-3 expression was studied in 
seven chronically HIV-1 – infected individuals at baseline and 
at 1, 2, 3, and 6 mo after initiation of HAART ( Fig. 3 ).  Four 
subjects with chronic infection demonstrated a steady decline in 
Tim-3 levels on both CD4 +  and CD8 +  T cells with HAART, 
whereas three subjects (OM 304, 331, and 287) maintained 
high levels of Tim-3 expression despite    achieving  undetectable 

chronically HIV-1 – infected individuals using matched MHC-
I pentamers. We observed signifi cantly higher levels of Tim-3 
on HIV-1 – specifi c versus CMV-specifi c CD8 +  T cells (P 
= 0.0065 by mean fl uorescence intensity [MFI], P = 0.0026 by 
percentage of Tim-3 + ;  Fig. 2, a – e ).  CMV-specifi c CD8 +  T 
cells exhibited low levels of Tim-3 expression, with the excep-
tion of one response to CMV-pp65-TPRVTGGGAM, which 
exhibited high levels of Tim-3 expression as measured by MFI, 
observed in cells from an individual with AIDS (absolute CD4 
count, 132 cells/ μ l). Tim-3 expression was heterogenous 
among HIV-1 – specifi c responses, with some exhibiting very 
high levels of Tim-3, whereas others exhibited only baseline 

  Figure 3.     Effect of HAART on levels of Tim-3 expression in 

chronic HIV-1 infection.  Seven chronically HIV-1 – infected individuals 

from the CIRC cohort were sampled at baseline and at 1, 2, 3, and 6 mo 

after initiation of HAART. (a and b) Shown are compiled Tim-3 expression 

on CD8 +  T cells versus months after initiation of HAART (a) and Tim-3 and 

CD38 expression levels, as determined by fl ow cytometry, along with 

 absolute CD4 +  T cell count and HIV-1 viral load clinical data (b). The six 

individuals followed for 6 mo achieved undetectable viral loads (bDNA 

 < 50 copies/ml). The chart in b summarizes the p-values obtained from 

a mixed-effects longitudinal analysis studying associations between 

Tim-3 expression on CD8 +  T cells with HIV-1 viral load, CD8 +  T cell activation 

as measured by CD38 expression (MFI), and absolute CD4 +  T cell count. 

The results of this analysis are further outlined in the text, and details are 

outlined in Materials and methods.   

  Figure 4.     Quantitative PCR analysis of T-bet and GATA-3 mRNA 

in Tim-3  +   versus Tim-3   �    T cell subsets.  PBMCs were stained with 

monoclonal antibodies to CD3, CD4, CD8, and Tim-3 and sorted into 

Tim-3 + CD8 + , Tim-3  �  CD8 + , Tim-3 + CD4 + , and Tim-3  �  CD4 +  subsets by fl ow 

 cytometry. RNA was isolated and reverse transcribed. GATA-3, T-bet, TBP, 

and IFN- �  transcripts were quantifi ed in triplicate by SYBR real-time PCR. 

Levels of GATA-3, T-bet, and IFN- �  expression were normalized to TBP. 

Shown are normalized quantifi cations expressed relative to the mean of 

Tim-3  �  CD8 +  from a representative HIV-1 – infected chronic progressor 

(CIRC cohort). Error bars represent SE.   
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  Figure 5.     Tim-3 – expressing CD8 +  and CD4 +  T cell populations are dysfunctional.  (a and b) PBMCs derived from HIV-1 – infected and  – uninfected 

individuals were stimulated with pooled peptides or SEB superantigen for 6 h, stained for IFN- � , TNF- � , and Tim-3 using a polyclonal Tim-3 antibody, and 

analyzed by multiparametric fl ow cytometry. (a) Representative fl ow cytometry plots showing cytokine responses to pooled Gag peptides and SEB in CD8 +  

and CD4 +  T cells from a chronically HIV-1 – infected individual (CIRC cohort). We used a three-tiered gating system for analyzing cytokine secretion by 
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Tim-3 – expressing cells, considering Tim-3  �  , Tim-3 lo , and Tim-3 hi  populations. The division between Tim-3  �   and Tim-3 lo  populations was determined based 

on a control normal goat serum staining (as in  Fig. 1 a ). The division between Tim-3 lo  and Tim-3 hi  was set arbitrarily and then consistently applied to all 

samples (all run in parallel). (b) Compiled fl ow cytometry data from 10 chronically HIV-1 – infected progressors (CIRC cohort). IFN- �  response percentage 

for each subset is normalized to the total number of cells within that population. (c) PBMCs from three chronic progressors were stained with an HLA-

A*0201-SLYNTVATL pentamer and stimulated with SLYNTVATL peptide or DMSO control. Shown are cytokine production and Tim-3 expression as deter-

mined by fl ow cytometry in a representative subject. (d) CD8 +  T cells were sorted into purifi ed Tim-3 hi CD8 +  T cells and Tim-3  � /lo CD8 +  T cell populations 

and labeled with CFSE from one of three representative HIV-1 – infected individuals. These two populations were then cultured in the presence of anti-CD3 

and anti-CD28 monoclonal antibodies for 5 d. Cells where then assessed for the diminution of CFSE as a readout of cell division. (e) PBMCs from HIV-1 –

 uninfected ( n  = 5) and HIV-1 – infected ( n  = 5) subjects were assessed for levels of intracellular Ki67 antigen expression. Shown are fl ow cytometry plots 

displaying Ki67 expression (x axis) by Tim-3 expression as determined with monoclonal anti – Tim-3 (y axis). (f) Shown is a histogram presenting Ki67 

staining in comparison to isotype controls in Tim-3  �   and Tim-3 +  populations of CD8 +  T cells. (g) Shown is compiled Ki67 staining data from fi ve HIV-1 –

 infected subjects broken down into Tim-3 +  and Tim-3  �   populations of CD8 +  T cells. Solid lines show the mean.   

 

HIV-1 viral loads ( < 50 copies/ml branched-chain DNA 
[bDNA];  Fig. 3, a and b ; and Fig. S3, available at http://www
.jem.org/cgi/content/full/jem.20081398/DC1). In a mixed-
eff ects longitudinal analysis we observed that CD8 +  T cell 
activation, as measured by CD38 expression, was signifi cantly 
associated with Tim-3 expression over the period of HAART. 
Levels of CD38 expression   on CD8 +    T cells, as measured by 
either percentage or MFI, were   associated with levels of 
Tim-3 expression on CD8 +    T cells during therapy, with 
a   0.38% higher Tim-3 expression per   1% higher CD38 expres-
sion   (SE = 0.11; P = 0.001;    Fig. 3 b ) and a 0.7% higher Tim-3 
expression per   unit higher CD38 MFI (SE = 0.19;   P = 0.001). 
These eff ects remained unaltered when adjusted for CD4 +  T 
cell count. In contrast, neither HIV-1 viral load (P = 0.25) 
nor absolute CD4 +  T cell count (P = 0.07) were signifi cantly 
associated with Tim-3 expression after HAART. Maintenance 
of high levels of Tim-3 expression in a subset of chronically 
HIV-1 – infected individuals treated with HAART therapy is 
thus related to ongoing T cell activation (CD38 expression). 

 Tim-3 expression defi nes a population of dysfunctional 

Th1/Tc1 cells 

 We sorted Tim-3 +  from Tim-3  �   populations within both 
CD8 +  and CD4 +  T cell subsets using PBMC from both HIV-
1 – infected and  – uninfected individuals and quantifi ed T-bet 
(Th1), GATA-3 (Th2), and IFN- �  (Th1) messenger RNA 
(mRNA) by quantitative PCR. For both CD8 +  and CD4 +  T 
cell populations, GATA-3 was expressed at higher levels in 
the Tim-3  �   fraction than in the Tim-3 +  fraction, whereas T-
bet was more highly expressed in the Tim-3 +  population 
( Fig. 4 ).  Despite the Th1/Tc1 character of Tim-3 +  cells, we 
detected the majority of IFN- �  mRNA in the Tim-3  �   CD8 +  
population. We then examined IFN- �  and TNF- �  produc-
tion in response to stimulation with pooled HIV-1 – Gag pep-
tides, CMV/EBV/Infl uenza (CEF) peptides, or staphylococcus 
enterotoxin B (SEB) in PBMC from 10 acutely/early HIV-1 –
 infected individuals, 10 chronic progressors, 10 viral controllers, 
and 5 HIV-1 – uninfected individuals. In both HIV-1 – infected 
and  – uninfected subjects, IFN- �  production from CD4 +  and 
CD8 +  T cells in response to stimulation was observed pre-
dominately from the Tim-3  �   population, with minimal cyto-
kine production observed in either the Tim-3 lo  or Tim-3 hi  
populations ( Fig. 5, a and b ).  Analogous patterns of cytokine 

production were observed for acutely/early infected individuals, 
chronic progressors, viral controllers, and HIV-1 – uninfected 
subjects (Fig. S4, available at http://www.jem.org/cgi/content/
full/jem.20081398/DC1). TNF- �  and CD107a expression 
in response to antigen were similarly restricted to Tim-3  �   
cells (Figs. S4 and S5). As a corollary, we identifi ed HIV-1 –
 specifi c CD8 +  T cells by staining with MHC-I tetramers and 
observed that, in response to cognate peptide, IFN- �  was pro-
duced only by the Tim-3  � /lo  fraction, with no IFN- �  produc-
tion from tetramer +  Tim-3 hi  cells ( Fig. 5 c ). Thus, the lack 
of cytokine secretion from the Tim-3 hi  population cannot be 
attributed to an absence of antigen-specific cells. Tim-3 hi  
CD8 +  T cells were subsequently sorted from Tim-3  � /lo  CD8 +  
T cells using ex vivo PBMC from untreated chronic pro-
gressors. Both subsets were stimulated with anti-CD3/
anti-CD28, and proliferation was assessed by CFSE dilution. 
Proliferation of the Tim-3  � /lo  cells was observed, whereas 
minimal proliferation was detected in the Tim-3 hi  popula-
tion ( Fig. 5 d ). 

 We costained ex vivo PBMC from fi ve HIV-1 – unin-
fected individuals and 5 HIV-1 – infected chronic progressors 
with Tim-3 and Ki67 antigen. Ki67 antigen is a nuclear 
protein that is generally expressed only in cells in the late 
G 1 , S, G 2 , and M phases of cell cycle ( 33 ). Hence, it is gen-
erally used as a marker of proliferating cells. In chronic 
HIV-1 infection, however, it has been demonstrated that 
the large majority (92  ±  5%) of Ki67 +  T cells in peripheral 
blood are activated cells that are arrested in the G 0 /G 1  
phases of cell cycle ( 34 ). Several studies have noted that 
Ki67 expression on T cells from HIV-1 – infected individuals 
is associated with dysfunction or anergy ( 35 – 37 ). Consis-
tently with previous studies, we observed elevated frequen-
cies of Ki67 +  cells in both the CD4 +  and CD8 +  T cell subsets 
of HIV-1 – infected versus  – uninfected PBMC ( Fig. 5 e ) ( 38 ). 
Although the large majority of Tim-3 +  cells were Ki67  �  , 
Ki67 +  T cells were greatly enriched for Tim-3 – expressing 
cells ( Fig. 5 g , P = 0.0159). Expression of Tim-3 on this 
population, which has been characterized as activated but 
arrested in cell cycle, is consistent with our in vitro data 
showing a lack of proliferation of Tim-3 – expressing cells. 
Collectively, these studies indicate that Tim-3 expression 
defi nes a population of activated, but dysfunctional, T cells 
in HIV-1 infection. 
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  Figure 6.     Addition of sTim-3 enhances the proliferation of HIV-1 – specifi c T cells.  (a) PBMC from a chronically HLA-A0201 +  HIV-1 – infected indi-

vidual were stimulated with the SLYNTVATL peptide in the presence of 4, 2, or 1  μ g/ml sTim-3, or a control (see Tim-3 expression methods), for 6 d. Cells 

were stained with HLA-A*0201 SLYNTVATL tetramer and mAbs to CD3, CD8, and anti – Tim-3. Percentages of viable tetramer +  CD8 +  T cells were determined 

by fl ow cytometry. Each condition was tested in independent triplicate. Shown are mean percentages of tetramer +  CD8 +  T cells on day 6 of stimulation. 
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Error bars represent SE. (b and c) PBMCs from HIV-1 – infected patients were stained with CFSE, and the effect of 2  μ g/ml sTim-3 on cytokine production 

and proliferation of PBMCs in response to antigen was determined in these individuals over a 5-d stimulation assay. (b) Shown are representative data 

from one chronically HIV-1 – infected individual on day 5 of culture, showing CFSE (x axis) by IFN- �  production (y axis) in CD8 +  and CD4 +  T cell popula-

tions in response to DMSO (top), pooled HIV-1 – derived Gag/Nef peptides (middle) or CEF pooled peptides (bottom) in the presence or absence of either 2 

 μ g/ml sTim-3 or an equal volume of expression control (see Materials and methods). CFSE becomes diluted in cells undergoing proliferation. Thus, cells in 

the two left quadrants of each plot have proliferated. (c) Shown are summary data for the effect of 2  μ g/ml sTim-3 on proliferation in response to Gag 

from seven chronically HIV-1 – infected individuals. P-values were determined by the Wilcoxon matched pairs test. (d) PBMC from an individual with 

chronic progressive HIV-1 infection were stained with CFSE and stimulated for 7 d with DMSO and pooled HIV-1 – Gag peptides or with anti-CD3 and 

anti-CD28. For each stimulation, the effect of 10  μ g/ml of anti – Tim-3 mAb 2E2 was compared with 10  μ g/ml of mouse IgG1 isotype control. Shown are 

fl ow cytometry plots showing CD3 by CFSE, where diminution of CFSE is indicative of proliferated cells.   

 

 Blocking the Tim-3 – Tim-3L pathway enhances 

the functionality of HIV-1 – specifi c T cells 

 To delineate the causal relationship between Tim-3 expression 
and T cell dysfunction, we tested whether blocking the inter-
action of Tim-3 with its ligands would restore function in 
Tim-3 – expressing cells. We used a recombinant soluble Tim-3 
(sTim-3) glycoprotein to compete for Tim-3 ligands. Addition 
of sTim-3 enhanced the expansion of CD8 +  T cells specifi c for 
the HLA-A*0201 restricted HIV-1 – Gag epitope SLYNTVATL 
(SL9) in HIV-1 – infected chronic progressors in a dose-depen-
dent manner up to 2  μ g/ml ( Fig. 6 a ).  Enhanced proliferation of 
both CD8 +  and CD4 +  T cells was also observed when PBMCs 
from chronic progressors were stimulated with pooled Gag and 
Nef peptides ( Fig. 6, b and c ). We corroborated these data by 
using a blocking anti – Tim-3 mAb clone (2E2) to disrupt the 
Tim-3 pathway in an analogous proliferation assay experiment. 
Addition of 10  μ g/ml of mAb 2E2 resulted in a profound rescue 
of HIV-1 – Gag T cell proliferative responses ( Fig. 6 d ). 

 An additional observation from these experiments is that 
cells that had undergone proliferation in vitro exhibited high 
levels of Tim-3 expression (Fig. S6, available at http://www
.jem.org/cgi/content/full/jem.20081398/DC1). Tim-3 up-
regulation in response to anti-CD3/anti-CD28 was observed 
as early as 20 h after stimulation and progressively increased 
out to at least 120 h (unpublished data). This is consistent with 
Tim-3 acting as a negative immune regulator, where antigen-
stimulated cells perform eff ector functions and then up-regu-
late Tim-3 as a means of terminating responses. In reconciling 
our ex vivo data showing a lack of cytokine production from 
Tim-3 +  cells with published in vitro data demonstrating an as-
sociation between IFN- �  production and high levels of Tim-3 
expression, there is an important distinction to make. Cells ex-
pressing Tim-3 ex vivo have been subjected to chronic stimula-
tion in vivo and are dysfunctional to further in vitro stimulation. 
In contrast, when Tim-3  �   cultured cells are stimulated in vitro 
they perform eff ector functions, such as producing IFN- � , and 
then up-regulate Tim-3 to dampen these responses. Thus, de-
pending on when one observes these cultures, high levels of 
Tim-3 and IFN- �  could be observed in association. This model 
predicts that in addition to restoring functions of exhausted 
HIV-1 – specifi c T cells, in vitro treatment with sTim-3 should 
prolong eff ector function in response to other antigens. This is 
supported by examining the level of IFN- �  production at day 
5 of in vitro stimulation with anti-CD3/CD28. Under these 

conditions, all cells that have undergone division express high 
levels of Tim-3 (unpublished data). In the presence of sTim-3, 
these cells consistently express higher levels of IFN- �  than in 
the presence of a control (Fig. S7, available at http://www.jem
.org/cgi/content/full/jem.20081398/DC1). 

 The Tim-3 – expressing T cell population is distinct 

from the PD-1 – expressing population. 

 Because PD-1 has been identifi ed as a marker of exhausted T 
cells in HIV-1 infection, we determined whether Tim-3 ex-
pression defi nes the same or a distinct population. PBMC from 
10 individuals with chronic progressive HIV-1 infection were 
costained for Tim-3 and PD-1. Expression was analyzed by 
fl ow cytometry after gating on CD8 +  or CD4 +  T cells ( Fig. 7 ).  
In 9/10 subjects, Tim-3 and PD-1 were primarily expressed by 
distinct populations of CD8 +  T cells. One subject, OM513, 
displayed a frequent Tim-3 + PD-1 +  population (23.6%) but re-
tained both Tim-3 + PD-1  �   and Tim-3  �  PD-1 +  populations (23 
and 16.7%, respectively). Similarly, 9/10 subjects showed pri-
marily divergent staining for PD-1 and Tim-3 on CD4 +  T 
cells ( Fig. 7, c and d ). In HIV-1 – specifi c CD8 +  T cells, we ob-
served two patterns of expression: tetramer +  populations were 
predominantly Tim-3 + PD-1  �   ( Fig. 7 e ) or they were predom-
inantly Tim-3  �   and PD-1 +  ( Fig. 7 f ). In both patterns, a mi-
nority population coexpressed both Tim-3 and PD-1 ( Fig. 7, 
e and f ). Thus, Tim-3 and PD-1 expression defi ne primarily 
distinct populations. 

 We performed dual staining for Tim-3 and CD25 on 
both CD4 +  and CD8 +  T cells ( Fig. 8 a ).  We observed that 
Tim-3 and CD25 were primarily expressed by distinct pop-
ulations of T cells. These data demonstrate that Tim-3 ex-
pression on CD4 +  T cells does not mark a population of 
classical regulatory T cells. We then determined if the Tim-
3 hi  population could be defi ned by other cell surface markers 
that have been used to defi ne the maturation/diff erentiation 
status of T cells by costaining for CD57, CD45RA, CD27, 
CD28, and CCR7 ( 39 – 42 ). Tim-3 – expressing CD8 +  T cells 
from chronically HIV-1 – infected individuals were distrib-
uted across a range of phenotypic profi les ( Fig. 8, b and c ). 

 Tim-3 +  T cells exhibit impaired Stat5, Erk1/2, 

and p38 signaling 

 We assessed the kinetics of STAT5, Erk1/2, and p38 phos-
phorylation (pSTAT5, pErk1/2, and p38, respectively) after 
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  Figure 7.     Tim-3 and PD-1 are independent surface markers with divergent expression.  (a – d) PBMCs were labeled with fl uorochrome-conjugated 

mAbs to CD3, CD8, CD28, PD-1, and Tim-3. (a and b) Shown are fl ow cytometry plots from 10 chronically HIV-1 – infected individuals (CIRC cohort), gated 

on either the CD3 + CD8 +  population (a) or the CD3 + CD4 +  population (b). (c and d) Shown is summary data of the fl ow cytometry plots displayed in a and b. 

(e and f) Shown are fl ow cytometry data analyzing coexpression of Tim-3 and PD-1 on HIV-1 – specifi c CD8 +  T cells in comparison with bulk CD8 +  T cells in 

CD8 + -enriched PBMC from individuals with chronic progressive HIV-1 infection. Solid lines show the mean. (e) HIV-1 – Pol-ILKEPVHGV-specifi c CD8 +  T cells 

were identifi ed using HLA-A02 tetramers. (f) HIV-1 – Nef-TGPGVRYPL-specifi c CD8 +  T cells were identifi ed using HLA-B07 tetramers.   
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Tim-3 signaling in the pathogenesis of multiple sclerosis and 
other autoimmune diseases ( 31, 44, 45 ). We show that in 
HIV-1 infection, the proportion of CD8 +  and CD4 +  T cells 
in peripheral blood that express Tim-3 can reach in excess of 
70 and 30%, respectively (in contrast to means of 28.5 and 
17.6% in HIV-1 – uninfected individuals). As these frequencies 
exceed the proportion of HIV-1 – specifi c cells in the periph-
ery, suppression of T cell function by Tim-3 likely contrib-
utes not only to the loss-of-functional virus-specifi c responses 
but also to the impairment of responses to other antigens. This 
is supported by our observation that a subset of CMV and 
EBV-specifi c CD8 +  T cells in chronic HIV-1 – infected indi-
viduals expresses high levels of Tim-3 and is consistent with 
observations that HIV-1 – infected individuals have reduced 
responses to recall antigens and vaccinations ( 46 ). The factors 
leading to this generalized expression of Tim-3 are unknown. 
Our data does, however, show a disproportionately high level 
of Tim-3 expression on HIV-1 – specifi c CD8 +  T cells, which 
is consistent with the preferential dysfunction of HIV-1 – spe-
cifi c CD8 +  T cells in chronic HIV-1 infection. We speculate 
that the heterogeneity that we observed in levels of Tim-3 
expression on HIV-1 – specifi c CD8 +  T cell responses may re-
fl ect the relative functionality of that response, with greater 
frequencies of Tim-3 – expressing antigen-specifi c cells associ-
ated with more advanced exhaustion and dysfunction. It will 
also be important to determine whether the fi xation of escape 

stimulation in Tim-3 hi  versus Tim-3  � /lo  CD8 +  T cells in three 
HIV-1 – infected individuals ( 43 ). Tim-3 hi  CD8 +  T cells had 
higher levels of basal phosphorylation of STAT5, p38, and 
ERK1/2 compared with Tim-3  � /lo  CD8 +  T cells, and they 
exhibited lower fold changes in the phosphorylation of these 
molecules when stimulated in vitro with IL-2 for the STAT5 
pathway and with PMA/Ionomycin (P+I) for p38 and 
ERK1/2 (MAP kinase pathway;  Fig. 9, a and b ).  This impaired 
signaling response was seen in every stage of diff erentiation of 
Tim-3 – expressing cells ( Fig. 9, c – e ). Thus, Tim-3 – expressing 
CD8 +  T cells exhibit a blunted change in phosphorylation of 
preactivated signaling proteins. This is consistent with the 
model recently proposed by Schweneker et al. ( 43 ), in which 
HIV-1 infection induces chronic activation of T cells, resulting 
in enhanced basal phosphorylation and perturbed signaling in 
response to restimulation. The intracellular domain of Tim-3 
contains fi ve conserved tyrosine residues but does not contain 
sequences corresponding to the ITIM consensus, and its down-
stream signaling targets remain unknown. 

  DISCUSSION  

 Together, these data support that Tim-3 acts to suppress ef-
fector functions of activated T cells in chronic uncontrolled 
viral infection with HIV-1. This complements and integrates 
previous studies that have identifi ed an important role for 
Tim-3 in immunoregulation and have implicated defective 

  Figure 8.     Tim-3 – expressing CD8 +  T cells are present in diverse phenotypic profi les.  (a) PBMCs from HIV-1 – uninfected ( n  = 3) and chronically 

HIV-1 – infected ( n  = 3) individuals were labeled with fl uorochrome-conjugated mAbs to CD3, CD8, CD4, CD25, and Tim-3. Shown are fl ow cytometry plots 

gated on the CD3 + CD4 +  population or the CD3 + CD8 +  population from two representative individuals. (b) PBMCs from a chronic progressor were labeled 

with fl uorochrome-conjugated mAbs against Tim-3, CD3, CD8, CD28, CD27, CD45RA, CCR7, and CD57, as well as with a dead cell – discriminating marker. 

Gating was fi rst performed to include only the viable CD3 + CD8 +  population in subsequent analyses. Shown are phenotypic representations of the Tim-3 hi  

population (blue) versus Tim-3 lo  population (red). (c) Summary data showing phenotypic profi ling for seven chronically HIV-1 – infected individuals. Gating 

for maturation/differentiation markers was determined based on fl uorescence minus one controls, and results were analyzed using SPICE software. 

Shown are the frequencies of populations with the corresponding combination of phenotypic markers, with each individual represented by a single bar.   
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  Figure 9.     Tim-3 – expressing cells exhibit impaired Stat-5, p35, and Erk1/2 signaling in response to stimuli.  Phosphorylation status of 

Stat5, p38, and Erk1/2 were analyzed by fl ow cytometry in Tim-3 hi  versus Tim-3  � /lo  CD8 +  T cells from three HIV-1 – infected subjects. Whole PBMCs 

were surface stained on ice, stimulated with either rIL-2 for 45 min or P+I for 15 min, and phosphorylation of Stat5 or Erk1/2 and p38, respec-

tively, was analyzed with phosphospecifi c antibodies in CD3 + CD8 +  T cells and based on their Tim-3 expression. (a) Shown is a representative fl ow 

cytometry gating of Tim-3 hi  and Tim-3  � /lo  CD8 +  PBMCs evaluating the fold change in p38 phosphorylation after 15 min of stimulation with P+I 

and summary of data from three chronically HIV-1 – infected individuals, each analyzed in triplicates, with fold changes in phosphorylation of stim-

ulated/unstimulated cells. (b) Shown is a representative time course depicting fold change in phosphorylation (stimulated/unstimulated cells) after 

15, 30, and 45 min of stimulation. (c – e) Compiled data for Stat5 (c), Erk-1/2 (d), and p38 (e), showing differential levels of change in target phos-

phorylation (measured by change in mean fl uorescence intensity) in Tim-3 +  versus Tim-3  �   cells within each of the following CD3 + CD8 +  T cell sub-

populations: naive (CD27 + CD45RA + ), memory (CD27 + CD45RA  �  ), effector memory (CD27  �  CD45RA  �  ), or effector (CD27  �  CD45RA + ). Statistical 

analyses were performed using a nonparametric two-tailed Mann Whitney  U  test. (*, P  ≤  0.05; **, P  <  0.01; ***, P  <  0.001) using Prism GraphPad. 

Error bars represent SE.   
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fected individuals. Because a subset of subjects maintain high 
levels of Tim-3 expression despite seemingly eff ective 
HAART regimens, Tim-3 therapeutics may also play a role in 
reversing immune defects that persist with HAART. 

 The data presented in the present study clearly demonstrate 
that Tim-3 expression defi nes a distinct population of ex-
hausted T cells from that of the recently identifi ed PD-1 – ex-
pressing population. This corroborates a recent study that 
reported that PD-1 – expressing cells comprise only a subpopu-
lation of dysfunctional HIV-1 – specifi c CD8 +  T cells in chronic 
progressors ( 52 ). The mechanisms leading to T cell exhaustion 
in the context of HIV-1 infection are clearly complex and can-
not be attributed to a single pathway. It will be intriguing in 
future studies to explore the possibility of an additive or a syn-
ergistic eff ect of simultaneously blocking both the Tim-3 and 
PD-1 pathways. Such strategies may allow for a more compre-
hensive reversal of T cell exhaustion, potentially leading to po-
tent combination therapies. 

 MATERIALS AND METHODS 
 Subjects.   Subjects were selected from participants in the CIRC Cohort, 

Toronto, Canada, and the OPTIONS Cohort, University of California San 

Francisco (UCSF). The CIRC cohort represented acutely/early HIV-1 – in-

fected subjects, HIV-1 – infected chronic progressors, and HIV-1 – infected 

viral controllers. Acute/early subjects were defi ned as individuals infected 

with HIV-1 within the last 4 mo. Chronic progressors were defi ned as indi-

viduals infected with HIV-1 for  > 1 yr with a CD4 +  T cell count decline of 

 > 50 cells/mm 3 /year. Viral controllers were defi ned as individuals infected 

with HIV-1 for  > 1 yr, no evidence of CD4 +  T cell count decline, and a viral 

load of  < 5,000 copies/ml bDNA. Clinical data for the cohort used in this 

study were the following: acute/early, absolute CD4 +  T cell counts median 

= 542 and range = 180 – 1,240 cells/mm 3 , and viral loads median = 227,567 

and range = 79,000 to  > 500,000 copies/ml; chronic progressors, absolute 

CD4 +  T cell counts median = 250 and range = 132 – 660 cells/ml, and viral 

loads median = 50,000 and range = 290 – 500,000 copies/ml; and viral con-

trollers, absolute CD4 +  T cell counts median = 936 and range = 600 – 1,440 

cells/mm 3 , and viral loads median = 100 and range = 50 – 250 copies/mm 3 . 

The subject with a viral load of 290 copies/ml, defi ned as a chronic progres-

sor, was included in this patient group based on a CD4 +  T cell count that 

had declined to 200 cells/mm 3 . The next lowest viral load in the chronic 

progressor group was 11,608 copies/ml. The chronic progressor with a rela-

tively healthy absolute CD4 +  T cell count of 660 cells/mm 3  had a viral load 

of 51,250 copies/ml and exhibited CD4 +  T cell count decline. The rela-

tively high CD4 +  T cell count in this individual was likely because of their 

relatively recent infection (13 mo). Controls were obtained from HIV-1 –

 uninfected patients in the same demographic area with a similar age and sex 

profi le and were processed in an identical manner. For the OPTIONS Co-

hort, baseline samples from all recruited subjects were evaluated to establish 

their HIV-1 infection status. Screened subjects must meet one of three crite-

ria to be defi ned as having acute/early HIV-1 infection: (1) HIV-1 RNA 

 > 5,000 copies/ml with a negative or indeterminate HIV-1 antibody test; (2) 

a documented negative HIV-1 antibody test within 6 mo with current sero-

conversion; or (3) a history compatible with acute/early HIV-1 infection 

with laboratory confi rmation based on a nonreactive less sensitive antibody 

test. All subjects discuss the advantages and disadvantages of early antiretro-

viral therapy with study staff  and arrangements are made for therapy for those 

who elect to initiate treatment. Slightly over half of participants decline 

therapy. A total of 60 individuals with acute/early HIV-1 infection from the 

OPTIONS cohort were examined in this study. A median CD4 +  T cell 

count of 544 (interquartile range 429.5, 721) cells/mm 3  and median HIV-1 

viral load of 4.7 (interquartile range 3.66, 5.2) log 10  copies/ml. Controls 

were obtained from HIV-1 – uninfected patients from both the Stanford 

mutations results in diminished Tim-3 expression on epitope-
specifi c T cells and improvement in functionality, as has been 
described for PD-1 ( 47 ). These questions will be addressed by 
future studies. 

 We observed that the initiation of HAART in chronic 
progressive HIV-1 infection frequently resulted in a decline 
in Tim-3 expression (four out of seven individuals). How-
ever, we observed that a subset of chronically HIV-1 – in-
fected individuals on HAART therapy (three out of seven) 
retained high levels of Tim-3 expression despite suppression 
of HIV-1 viral load to undetectable levels. Maintenance of 
Tim-3 expression in the context of HAART was associated 
with sustained high levels of T cell activation (CD38 expres-
sion). Persistence of CD38 expression on T cells during 
HAART is predictive of disease ( 32, 48 – 50 ). In cases where 
HAART has failed to result in a reduction in CD38 expres-
sion, it has been demonstrated that intensifi cation of HAART 
by eradicating persistent low-level replication can have a pos-
itive impact on immunological parameters, including dimin-
ishment of CD38 expression ( 51 ). 

 Our demonstration that blockade of the Tim-3 pathway 
can enhance HIV-1 – specifi c T cell responses ex vivo clearly 
demonstrates that the Tim-3 pathway plays a critical role in 
suppressing the overall T cell response to HIV-1. It should be 
noted, however, that although T cell exhaustion is associated 
with increased viral replication, it is unclear whether this 
phenotype leads to loss of viral control in vivo or whether 
this loss results primarily from other factors, such as viral es-
cape from CTL epitopes or the persistence of viral replication 
in sanctuaries inaccessible to CTL. The identifi cation of 
Tim-3 as a novel mechanism of T cell exhaustion constitutes 
an important prerequisite for designing studies aimed at de-
lineating the relative contributions of T cell exhaustion ver-
sus other factors in the overall inability of the cellular immune 
response to maintain control of HIV-1 replication. 

 An important implication of the present study is the possi-
bility that pharmacological agents that block Tim-3 signaling 
may be of benefi t in HIV-1 infection and potentially in other 
chronic viral diseases. However, it is unclear whether the high 
level of Tim-3 expressed in HIV-1 infection is the result of a 
pathological mechanism on the part of the virus to incapaci-
tate the host immune system or if it is a physiological response 
to chronic immune activation necessary to hold immunopa-
thology in check. With regard to the latter, recent data sup-
porting that a dysregulation of the Tim-3 pathway may 
contribute to the pathology of multiple sclerosis highlights the 
importance of Tim-3 in regulating potentially harmful im-
mune responses ( 30, 31 ). This situation is analogous to the 
considerations required in pursuing PD-1 as a therapeutic tar-
get. An important distinction of Tim-3 as a therapeutic target 
is its unique association with T cells that are impaired not only 
in their survival and proliferative potential but also in their 
ability to produce cytokine. Thus, blockade of the Tim-3 
pathway carries the novel potential to enhance not only the 
numbers of T cells in HIV-1 infection but also to improve the 
functionality of both CD8 +  and CD4 +  T cells in HIV-1 – in-
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with empty linearized pPA-TEV. 3 d after transfection, puromycin drug 

selection was initiated by replacing the media with fresh media supple-

mented with 1 – 5  μ g/ml puromycin. The media was exchanged with fresh 

puromycin-containing media every 2 d. 10 d later, six colonies from the 

pPA – TEV – Tim-3 transfection and six from the pPA-TEV transfection were 

isolated and expanded into 6-well tissue culture plates. Secreted proteins 

were detected by Western blot analysis using an anti – Tim-3 antibody for 

pPA – TEV – Tim-3 and an anti – protein-A antibody for pPA-TEV. A Tim-

3 – secreting clone (pPA – TEV – Tim-3 transfected) and a control protein 

A – secreting clone (pPA-TEV transfected) were selected and grown up in 2 

liters each of CHO-SFM-II media supplemented with 2% FBS, penicillin, 

streptomycin, Hepes,  l- glutamine, and 1  μ g/liter apoprotinin (Sigma-Al-

drich) in six T175 tissue culture fl asks. Cells were plated at 50% confl uency, 

and protein secretion was allowed to continue for 5 d. Supernatants were 

concentrated from 2 liters to 10 ml using Centricon Plus-70 centrifugal fi lter 

units (Millipore). Proteins were purifi ed using IgG Sepharose 6 Fast Flow 

beads (GE Healthcare) as per the manufacturer ’ s instructions. 200  μ l of 0.33 

mg/ml His-tagged TEV protease was then added to the beads, and cleavage 

was allowed to proceed overnight at 4 ° C. Supernatants were removed from 

beads, the beads were washed three times with 1 ml Tris-saline Tween, 

pH 7.2, and supernatants were pooled with wash eluates. This combined 

eluate was passed through a 1-ml nickel column (B-PER 6 ×  His fusion 

protein purifi cation kit; Thermo Fisher Scientifi c) to remove TEV protease 

and washed with 3  ×  2 ml of wash buff er 2 from the same kit. The eluates 

were subsequently passed through Detoxi-Gel endotoxin removal columns 

(Thermo FIsher Scientifi c), according to the manufacturer ’ s instructions, and 

then concentrated to 0.5 ml using Centricon plus-20 centrifugal fi lter units 

(Millipore). Volumes were then adjusted to 15 ml using sterile PBS and 

reconcentrated to 0.5 ml. The purity and identity of products were con-

fi rmed by SDS-PAGE and Western blot analysis. Protein concentration was 

determined by a Bradford assay. As expected, only small amounts of residual 

protein were detectable in the protein A control purifi cation. This sample 

serves as a control for any eff ect of contaminant proteins or reagents from the 

purifi cation process on proliferation or cytokine production. 

 Proliferation assay.   To track cell division, PBMCs from chronically HIV-

1 – infected individuals were labeled with 1 mM of the fl uorescent intracellu-

lar dye CFSE (5-[and -6] carboxyfl uorescein diacetate succinimidyl ester; 

Invitrogen) in PBS and mixed periodically for 10 min at room temperature. 

Labeling was quenched by addition of an equal volume of complete media 

(15% FBS in RPMI) for 2 min. The labeled cells were then washed twice, 

counted, and resuspended in cell culture media. CFSE-labeled cells were 

stimulated for 5 – 6 d with either DMSO alone, SLYNTVATL peptide, 

pooled HIV-1 – derived Gag and Nef peptides, or CEF pooled peptides in 

the presence or absence of sTim-3, an equal volume of expression control, a 

monoclonal Tim-3 – blocking antibody 2E2 (provided by V. Kuchroo, Cen-

ter for Neurologic Diseases, Brigham and Women ’ s Hospital, Boston, MA 

02115), or an IgG1 isotype control. At the end of the culture period, cells 

were washed and incubated with a combination of the following conjugated 

anti – human monoclonal antibodies: CD4, CD8 (BD), and Tim-3 (R & D 

Systems). Intracellular staining for IFN- � , IL-2 (BD), and CD3 (Beckman 

Coulter) was performed after cells were fi xed and permeabilized. Cells were 

then washed in PBC with 2 mM EDTA and 1% BSA and fi xed in 1% para-

formaldehyde before being run on an LSRII fl ow cytometer (BD). Data 

were analyzed by using FlowJo Software (version 6.4; Tree Star, Inc.). 

 Signaling analyses.   Before analyses of cellular signaling, archived PBMCs 

that had been viably frozen were thawed in 15 ml RPMI cell culture me-

dium (Mediatech, Inc.) containing 5% FBS (RPMI + ; Thermo Fisher Scien-

tifi c), washed in PBS containing 2% FBS (PBS + ), and then rested at 5  ×  10 6  

cells/ml in RPMI +  at 37 ° C in 5% CO 2  overnight. The next day, cells were 

washed with ice-cold PBS + , transferred to a 96-well V-bottom plate, and 

stained for cell surface markers with fl uorophore-conjugated monoclonal 

antibodies against CD3, CD8, CD27, CD45RA, and Tim-3 on ice for 

Blood Bank and uninfected individuals from the cohort demographics. Ad-

ditional subjects on HAART were recruited from these cohorts. This study 

was approved by the University of Toronto Institutional Review Board and 

by the UCSF Committee on Human Research, and subjects gave written 

informed consent. Studies were performed on cryopreserved PBMCs im-

mediately after thawing. At the initiation of this study, a comparison be-

tween fresh and frozen PBMCs was performed, and it was found that Tim-3 

levels remained proportional after freezing/thawing. 

 Peptides and stimulation reagents.   Overlapping HIV-1 Clade B Gag and 

Nef pooled peptides were obtained from the National Institutes of Health 

AIDS Research and Reference Reagent Program. CEF pooled peptides 

(AnaSpec), SEB (Sigma-Aldrich), and purifi ed anti-CD3 and anti-CD28 

monoclonal antibodies (BD) were used as additional reagents. Stimulations 

were performed with fi nal concentrations of 10  μ g/ml peptide. 

 Multicolor cytokine fl ow cytometry.   PBMCs from healthy HIV-1 – un-

infected and HIV-1 – infected individuals were stained with fl uorophore-

conjugated monoclonal antibodies to CD4, CD8, CD57, CCR7, CD27, 

CD45RA, CD25, Ki67 (BD), CD28, PD-1 (BioLegend), CD3 (Beckman 

Coulter), and TIM-3 (R & D Systems) to determine phenotype assessment. 

An Aqua amine dye (Invitrogen) was used as a discriminating marker for live 

and dead cells. In some experiments, cells were stimulated after thawing with 

an HIV-1 – Gag and  – Nef peptide pool, a CEF peptide pool, or SEB fol-

lowed by a fi xation and permeabilization step. Intracellular staining for cyto-

kines was performed using anti – TNF- �  and IFN- �  (BD). Cells were fi xed 

in PBS + 2% paraformaldehyde. Cells were acquired with a modifi ed FAC-

SAria, modifi ed LSRII system, or FACSCalibur (BD). A total of  > 100,000 

events were collected and analyzed with FlowJo software (Tree Star, Inc.). 

SPICE software (version 3.0; M. Roederer, Vaccine Research Center, Na-

tional Institute of Allergy and Infectious Diseases, National Institutes of 

Health) was used to assist in the organization and presentation of multicolor 

fl ow data. 

 Pentamer/tetramer analyses.   All pentamers were obtained from Pro-

Immune Ltd and all tetramers were obtained from Beckman Coulter. Pentam-

ers were used for the experiment displayed in  Fig. 2 , whereas tetramers were 

used for the experiment summarized in  Fig. 7 . Cryopreserved PBMC sam-

ples from chronically HIV-1 – infected individuals were thawed and washed 

with 2  ×  10 ml of 1% FBS PBS with 2 mM EDTA. Staining was performed 

immediately after thawing with fl uorophore-conjugated antibodies against 

CD8 (BD), Tim-3 (R & D Systems), CD3 (BD), and the indicated pentamers 

(unlabeled), followed by a secondary staining step with APC-labeled pen-

tamer fl uorotags. Cells were washed two times with 1% FBS PBS and then 

fi xed in 2% paraformaldehyde. Analysis was performed using a FACSCalibur 

instrument (BD). 

 Synthesis of recombinant Tim-3.   The expression vector pPA-TEV was 

previously derived from pIRESpuro3 (Clontech Laboratories, Inc.) and 

modifi ed to incorporate the transin leader sequence and N-terminal pro-

tein A tag. The Tim-3 insert was obtained from PCR using the following 

primers : Tim-3 external forward, 5 �  - TTCGGCCGGC CCTCAGAAGTG-

GAATACAGAGCGG  - 3 � ; and Tim-3 external reverse, 5 �  - TGAGCGGCC-

GCTCATCA TCTGATGGTTGCTCCAGAGTC  - 3 � . For each primer, 

the underlined bases represent the template annealing sequence. Additional 

5 �  sequences comprise restriction sites and stop codons. The region ampli-

fi ed by these primers constitutes only the IgV and mucin domains of Tim-

3. The resultant Tim-3 amplicon was cloned into the FseI – NotI cloning 

site of pPA-TEV. 10  μ g of circular DNA plasmid was then transfected into 

HEK293T cells using the calcium phosphate method (Invitrogen). Expres-

sion of Tim-3 was confi rmed by Western blot using a 1/5,000 dilution 

of a polyclonal anti – Tim-3 antibody (R & D Systems) and a 1/5,000 dilu-

tion of horseradish peroxidase – conjugated streptavidin (Thermo Fisher Sci-

entifi c). Transfection was then repeated with linearized pPA – TEV – Tim-3 

plasmid to generate stable cell lines. A parallel transfection was performed 
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in HIV-1 – infected and uninfected subjects. Fig. S5 shows the relationship 

between Tim-3 expression and degranulation (CD107a staining) in HIV-

1 – infected and  – uninfected subjects. Fig. S6 shows Tim-3 expression by 

CFSE diminution after 5 d of in vitro stimulation. Fig. S7 shows the ef-

fect of soluble on IFN- �  production after 6 d of in vitro stimulation with 

anti-CD28. Online supplemental material is available at http://www.jem

.org/cgi/content/full/jem.20081398/DC1. 
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